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Nomenclature

Ce

Pe
Pr,_”

Qi
Qwi

Ly
T2
T3
LE
RBKU!

Ergun coeflicient , 2 ¢ /(1804%)1/2

thermal capacity {L27'-2 Deg]

particle {or pore) sige |1

Darcy number K/(¢r2

medium parameter;

= 1: for porous medivm

=2 : for eolid walls

porous medium effective thermal conductivity
= $ky + (1= §)ksy [MLT-Deg]

fluid thermal conductivity [MLT'-%Deg~!]
solid wall thermal conductivity[M LT3 Deg-']
permeability [1?]

relative thermal conductivity = &, /k.ss , IMLT~3DegY]
elementary representative volume lengih scale [L]
system length scale (or; ry) [L]

geomelry parameter ;

== {1 for fiat geometry

=1 for circular geometry

pressure [ML-1T-]

dimensionless pressure pf(psu})

Peclet number upr3 /o gy

effective Prandtl number(p.)/(p;0.4/)

outer interfacial heat flux {MLT-?]

absolute dimensionless interfacial heat flux

= q«'ikelj(Tl' - Tc)/?'a =| %% |l'ut

radial direction (1]

inner radius of the inner wall [£)

outer radius of the inner wall |}

inner radius of the outer wall |L]

outer radius of the outer wall [L)]

Reynolds* number (upp; {12/ p,)



St;i_‘:ﬂ"-a""

time |7} -

temperature {Deg]

initial {emperature [Deg|

wall step temperature [Deg]
volume-averaged axial velocity {LT]
Darcien velocity (bulk velocity) {LT-1)
pore velocily in the axial direction [LT-]
dimensionless axial velocity u/up

axial direction (L]

porons medium eflective thermal diffusivity = k,;; /(Cpp)y; [12T-1)
radial grid sire scaling factor (niy, — 1) [ —nizq)

axial grid size scaling factor (¢4 — ¢;)/(¢ — ¢i-1)

relative thermal diffusivity o, /a.y;

solid wall thermnal diffusivity [L?T-1]

wall thickness ratio, ny/n,

decriment in any direction

dimensionless axial direction za.;/(r2u)

dimensionless radius (r/rs}

dimensionless temperature (7' — Te)/(T: - Tv)

dimensionless mixing cup temperature

Ir8(n)qmUdn/ [ qmUdy

dimensionless interfacial temperature

viscosity|M L1 T

effictive viscosity of the fluid s, = p,+34|M L7~

density |[M L)

thermal capacity ratio = #/¢re)s
dimensionless time da, sy /r}
porogity ratio

+{1-¢) (Cpr)s
Cpp 1
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Chapter 1

Introduction

1.1 Introduction

For the last two centuries, heat transfer through porous media had been a subject of
extenaive investigations. 1t covers a wide range of applications, such as Packed-bed
chemical reactors, transpiration cooling, geothermal operations, and refrigeration
cycles insulation. On the other hand, conjugated heat transfer plays a great rule in
determining the thermal behavior of most engineering systems, whenever multime-
dia systems are involved. Walls of considerable thickness, as well as, those of low
relative conductivity, are important examples in this field. ‘Itansient behavior of
the above applications, becomes important when start fon, and shut /off operations
are frequently involved. A very important example of this type of applications, are
nuclear reactors.

Although, huge work has been done in this field, it is still lacking to rigorous
analytical approaches, as most of the variables are mutually dependent, and can
rarely be arsmined constant. This encouraged the development of remiheuristic
equations, in which micro- and macroscopes are combined to avoid the sweeping
generality of the latter, and the complicated details of the former.

In the present work, a numerical solution is carried out to investigate the tran-
sient behavior of conjugated heat transler in a porous media bounded by a con-
centric annulus. The annulus is azsumed to have a uniform temperature initially.

Then suddenly it is subject to one of the following boundary conditions:



» Case |O]: Step temperature at the onter side of the outer wall, while $he inner

gide of the inner wall, and the entrance regions are kept adiabatic,

e Case [OF]: Step temperature at the outer side of the outer wall ,and at the
entrance region, while the inner side of the inner wall is kept adiabatic,

» Case [I]: Step temperature at the inner side of the ounter wall, while the outer

side of the outer wall, and the entrance regions are kept adiabatic,

o Case [IE]: Step temperature at the inner side of the inner wall ,and at the

entrance region, while the outer side of the outer wall is kept adiabatic

1.2 Literature Review:

Traditional studies in porous media, based primarily its calculations on Darcien
modelz and neglected non-Darcien effects, such as inertia forces and viscous forces
along the solid boundariea [1,2,3]. These effects become more significant as the flow
velocily increases, or al high porosity media [4,5]. Vafai and Tien [6], utilized the
houndary and inertia effects in their study of porous media heat transfer. They
showed that those effects were quite significant at high velocities and high velocities,
and hence can not be ignored.

Kaviany [7], investigated numerically the laminar flow in a porons channel
bounded by an irothermal parallel plates based on the Brinkman model. Vafai
and Kim (8], analysed the problem of forced convection in a channel filled with
a porous medium and bounded by two parallel plates, and exact solutions were
obtained for the velocity and thermnal profiles. Poulikakos and Ranken [9), inves-
tigated numerically the porosity variation, the inertia forces, and the solid walls
effect on both, the momentum, and heat transfer through porous media bounded
Ly parallel plates or circular tube. Al-Nimr et. al. [10] investigated the same prob-
lem numerically, in the thermal entrance region of a pipe. Naji [11], investigated
also numerically, the velocity and temperature profiles, of the transient problem

through porous medinm bounded by a concentric annulus,



For the non-porous media case, solutions were obtained analytically and nu-
merically, for different geometrier, with and without conjugation. El-Shaarawi and
Al-Nimr [12] solved for the fully developed laminar natnral convection in open-
ended vertical concentric annuli. While, Al-Nimr [13] solved analytically for the
transient fully developed free convection in vertical concentric annuli. Yan [14), as
well as, Al-Nimr and Hader [15] investigated numerically the transient conjugated
heat transfer in non-porous medium pipe flow. The former made use of numerical
finite differencing techniques in formnlating conjugation at the solid wall-fluid in-
terface, while the later sat a definite formulation at the interface. Schutte el. al. [16]
considered the axial conduction in the travsient conjugated heat transfere in a pipe
with developing Jaminar flow. The same problem with different boundary condi-
tions, was investigated by Lin and Kuo [17]. Al-Nimr and El-Shaarawi [18], solved
analytically for the transient conjugated heat transfer in parallel plate and circu-
Jar ducts. Hader [19} considered numerically the same problem for a concentric
annulus.

To the best of the anthor's knowledge, transient conjugated heat transfer in

porous medium, has not been investigated yet.
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Solid Walls

Thermal Entrance Region Starting Fosition
Porous Medium

Uniform Free Stream Velecily

Figure 2.1: Annulus geometry

2.1.2 DPorous Medium

"The porous medium filling the annulus is assumed to be isotropic. "Uhis assmmption
requires a solid matrix saturated with a fluid yielding any where into a conatant
properties porous medinm in all directions. This includes all characteristic prop-
ertien of the medinn. Obviously, properties can never be infinitesimally constant,
therefore, this assumption is valid only for averaged properties over the represen-
tative elementary volnme. (i.e, if we select any arbitrary volnme specimen of the
porous media with similar or greater volume then the representative elementary
volume, it will have the same averaged properties, no matter where it was picked,
or how big it was).

Accordingly, the solid matrix must be of uniform structure in all directions.
This requirement reduces the validity of the assumption, as it hecomes harder to
establish practically. In the actual case, specially near the boundaries channel-
ing phenomenon is more likely to occur, and channeling effect becomes a serious

medinm for transportation, of mass, momentun, and heat. In some cases, specially
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for non-consolidnted structures, this uncounted transportation, hecomes so serious
that it causes drastic variations in the thermal behavior of the system considered.
"T'he same problem is faced even in conrolidated solid structures, as the ratio of in-
ertia $o vircons forces becomnes lower. However, in the present work, the study will
be limitted to consolidated golid structures, with go high inertia to viscous forces
ratio, such that, the channeling phenomenon becomnes of negligible effect either on
masg, momentum, or heat transfer.

The flowing finid is arsumed to be an incompressible newtonian fluid.

2.2 Governing liquations:
2.2.1 Mass ITransfer:

Maes ig assumed to transfer axisymmetrically in parallel with the axis of the con-
fining annulus. This assumption is valid any where beyond the developing region
of the hydrodynamic flow. In porous media the flow becomes bydrodynamically
fully developed in the very near entrance of the porous duct 5]

The integral form of the continnity equation for flat geometry can be written

as,

[rl(Zr)nl cu-dr = (’.;n-}-l _ r;n-}-l) - up (2'1)

where;
m = () for fiat grometry, and m = 1: for circular geometry.
Note; u = ¢ . v, ;where v, is the pore velocity and u is the volume averaged

velocity.

2.2.2 Momentum Transfer:

In addition to the fully developed flow asswmption, in the preset work inertial flow
regime is agsumed (i,e; 1 ~ 10 < ffﬁ:’?f! < 150) [5]. Such an assumption takes
bonndary layer eflect into consideration, as well as core region at the pore level. It

enables us to account for the different effects that cansed hydrodynamic behavior

6



cffeck in determining the hydrodynamic profile, (as the boundary layer becomes of
a few particles thicknesa only [5]). Nevertheless, it still would be of great infinence
on the thernal profile, as the convective term would grow drastically otherwise.
The impermeability assumption is pre-nssumed in the impermeable solid walls as-

sumption,
2.2.3 Heal Transfer:
Hent Transfer Throngh Porons Medinm:

Heat transfer in the porons media s thought to be governed by the following

macrescopic equation [3]:

aT,  OT, L9 aT, oo,
(14 _(;jr "‘ u 3‘;- = agff . l;;;a;r Fr_' 'I‘ ‘5?" (2.4)

Thennal Incal equilibrivm s assumed, as temperature in introdnced in its av-
eraged form. In his assumption the temperature variation within the elementary
repregentative volume is masked, and assumed to be constant. It should be noted
here, while adapting this sassumption, that the author realizes the existence of the
microscopic temperature differences, but the temperature variation over the ele-
mentary volume is required to he much mnch sinaller then its variation over the
system length scale L, .

In addition, it iz assumed the above equation, that bonney effect in negligible,
and 1o heat generation. Also, viscous dissipation is assumed to be negligible, as
well as, dispersion effect.

Notice that neglecting the bouncy effect is pre-assumed in the incompressible
finid assumption. And, heat generation is a inatter of the actnal case of considera-
tion, while, vincous dissipation can only he neglected for fluids of very low viscosity,
or for high permeability porous medium. This draws attention, to keep parameters
within arsnmed litnits, ro that high permeability, and low viscosity does not come
in contradiction with the pre-assumed inertial flow regime. As for neglecting the
dispersion effect, cantion must be made, since dispersion effect depends on most of

the problems parameters, euch ag, Peclet number, porosity, effective conductivity,

8



and effective thermal diffusivity. For low Peclet number, dispersion effect becomes
weak [5] at lower porosity levels, hence this assumption may be verified. On the
other hand, as the Peclet number decreases, axial conduction neglecting becomes
unjustified any more. Therefore, axial conduction must be taken into considera-
tion in the equation. Actually, axial conduction consideration becomes a must in
a physical since, if the porous medium is treated as a semi-solid phase.

The boundary conditions for the porous medium will be discussed in the Sec-
tion 2.2.4.

Heat Transfer Through The Solid Walls:

The governing equation for heat transfer in the solid walls is assumed to be like;

19T, 19 9. w0y = 8T,
a, ot ~mar ar dz2
In this equation the walls are assumed to be isotropic. Also, axial conduction

(25)

is taken into consideration. While, no heat generation is assumed.

Notice, that walls in conjugated heat transfer problems play the main rule, in
developing the thermal profile of the system considered. The relative high ther-
mal condnctivity of the walls, as well as, their considerable thickness, canse axial
heat conduction to become a musf. This supports the previously assumed axial

conduction in the porous medium.

Conjugated Heat Transfer :

The unified energy equation, for both solid walls and porous media, would be the
union of Equations 2.4and 2.5, and can be written as;

ey aT, 0Ty 19 aT, a'_r,
0z

+(2 J)-u GJ'IFBr

55 (2.6)
where;
J = 1, for the porous medium, J = 2, for the solid walls, @, = a4y, a; = a,,
Ty =T, and, I; =1T,.
At the solid-porous media interface, heat flow is subject to continunity condition;
9



a7, aT,
key- T'i_rl =k, - B (2.7)

And interfacial temperatures are subject to » no-slip conditions,

Te(rs) = Tp(rs)

2.2.4 Global Boundary Conditions:

For the annulus shown in Figure 2.1, four different heating mechanisms are inves-
tigated. In all cases the whole system is initially at uniform temperature;
Att=00,forr <r<r,and0< 2 < oo

- T(r,2)=T;
Then, for £ > 0 it becomes subject to one of the following boundary conditions
according to the case considered ;
s Case [O]:
Step temperature at the outer side of the outer wall, while the inner side of

the inner wall, and the entrance regions are kept adiabatic. This corresponds
to the following boundary and inlet conditions at ¢ > 0:

~atz=0and, r, <r<ry: T(r,0,8) =T;

—atz=0andn <r<nandry<r<r; =00

—atz>0andr=r: =00

—atz>0and r=r; T(ry,2,t) =T,
» Case [OE]:

Step temperature at the outer side of the outer wall ,and at the entrance re-
gion, while the inner side of the inner wall is kept adiabatic, This corresponds
to the following boundary and inlet conditions at ¢ > 0:

—atz=0and,r; <r<ry T(r,0,t) =T,
10



—atz=0andn <r<mandn<r<rg 8T 0.0

~atz>0andr=r T = 0.0
—atz>0andr=r, T(ry2,t) =T,
e Case [I]:

Step temperature at the inner side of the outer wall, while the outer side of
the outer wall, and the entrance regions are kept adiabatic. This corresponds
to the following boundary and inlet conditions at ¢ > 0:

—atz=0and, r; <r<ry T(r,0,t)=1T;

—alz=0andn <r<rand, rs<r<rg L = 0.0

—atz>0andr=r;: T(riyz,8) = T,

~atz>0andr=r: & - 0.0
o Case [IE};

Step temperature at the inner side of the inner wall ,and at the entrance re-
gion, while the outer side of the outer wall is kept adiabatic, This corresponds
to the following boundary and inlet conditions at ¢ > 0:

—atz=0and, r,<r<r: | T(r,0,t) =T,

' —alz=0andn <r<mandr<r<r,: | %%::0.0
—atz>0and r=r T(r,2,8) =T\
—atz>0andr=r, =00

In all the above cases, steady state thermal behavior, is assumed near the end
of the axtal direction, or;
As 2 — oo: T = 0.0

*
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2.3 Scale analysis:

Selecting the Darcien velocity as a scale variable of axial velocity u;

u
U= —
tn

Choosing the inner radius of the outer wall as a system length scale ;

r
=5
Accordingly , choosing the time scale as the time required for thermal diffusion
to penetrate through the system length scale, or in other words, the time required

by the system core, to feel thermal changes, on its boundaries;

_tay
T——-;i—
3

Similarly, choosing the axial length scale, to be as the distance that the slug

flow would travel through the penetration time scale;

- % Qe
{=—=3
ra'uD

Upon scaling the Darcy law, pressure divergent can be found of order Begl2s
Therefore, substituting for z scale, p = p; - u},, can be chosen as a suitable scale
variable of pressure,

p=_F
p1uh

Finally, choosing the dimensionless temperature as, the ratio of temperature

deviation from step temperature, to the difference between initial and step rise

temperatures;

12



2.4 Nondimensional Problem Formulation:

In aid of the proposed scaling variables, the governing equations can be non-

dimensionalized to become:

¢ Non-dimensional® Unified Continuity Equation:

iz
[r; (20)" - U - dyp = (gt — gpt1) (2.8)

e Non-dimensional Unified Momentum Equation :

14,00, . 1 4P
(’1—'-;,—5;’—7] —é—q—)—Da '[1+CER€KII!'U]'U—R;EF—O (2-9)
Subject to

~ No-slip condition at the solid boundaries:

Ulne) =U(ns) = 0.0

e Non-dimensional Unified Energy Equation :

ae ad
2-7 . _..{ —_ . . -—..'_,. -
o 3 +(2-J)-u 3¢

apt 3 .80,  of' 8%,

™ Bn" 3n T PE B

The general boundary conditions of this equation are:

-at 7=00: 0(n,¢,0) = 1.0
— at both = n; and p = gy 02:&,.%

and; . 0, =4,
~ a8 ¢ — 00; 2 =00

13



o For 7> 0.0 one of the following cases is imposed:

- Case [O]: -
*at ¢ =0and, n, <n <y
*at¢=0andn, <n<mandn <y <y
rat¢>0and np =19,
tab ¢ >0and np=ng

~ Case [OFE]:
*at ¢ =0and, n; < n < ny

sat¢=0andm <y <mand g < n <y
* at ¢ >0and =19,

¥*

at ¢ >0and np=ng
— Case [I]:

xat¢=0and, N < n <y

ral¢=0andm<np<mandp <<y

* at ¢ >0and 5 =n;:
* at ¢ > 0and n = n,:

~ Case [IE):
* ab ¢ =0and, g < 9 <
xat¢=0and y <p<pand gy < np < gy
* at ¢ > 0and p =9
* at ¢ > 0and =g

14

8(n,0,7) =1
=00
£=00
B(n4y8,7) =0

8(n,0,7)=0

9('71:5.:7) =0

(n,0,7) =1
% =00

9(1}1,;,1) =0

88 _
oy =09

8(n,0,1) =0
g% =0.0
B(n,¢,7) =0
g% = 0.0



Chapter 3

Numerical Approximation

Introduction

Firat, the finite difference form of the integral continnity equation , and the mo-
mentum equation will presented. Then, the domain shall be discretized. Finally, a
logical approach for translating the system of equations into n running computer
prograin will be attempted. Consistency and stability analysis shall be presented

in Appendices (A,and B ) respectively.

3.1 Solution Methodology

In a closer look at the hydrodynawic, governing equations, it can be seen that the
continuily eqnabion in its integral formy, is needed as the n - 1" eqmation when
rolving for n unknown grid point velocities. 1t will be needed to compensate for
the unknown prersure term. ‘Therefore, solving hath equations shall be done simul-
taneously. Also, it can be seen, that the governing equations of the hydrodynamic
and thermal profiles are totally . T'his guides ne toward solving for the velocity
profile first, using both continnity and momentumm equations, and then use the
obtained velocity profile, to solve for the thermal profile.

Obviously, The velocity profile is unaffected neither by the axial location, nor
by the time location, due to the fully developed flow assumption. Also, 3t is not in-
fluenced by the temperature variation due to the no-dispersion assamption. There-

fore, the velocity profile, is only a one step solntion. In other words, solving for
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the velocity profile is needed only once, before it can he uged to obtain the ther-
mal profile along auy axial location, at any time domain, and for any temperature
variation. This suggests that the simple fully smplicit method is nsed in obtaining
it, making vse of the high stability level, and straight forward application, of this
methaod,

In the simple implicit method, the governing equation is centrally finite differ-
enced in one direction, and forwardly differenced in the other marching direction(s).
The central differencing produce a equation that can easily rolved using the normal
Thomas algorithm, Then the solution is nsed next, in the marching direction.

In the present work, there is no marching direction, and only one step solution
had to be found. Nevertheless, the continnity equation had to be =olved coupled
with the momentum equation, and hence the coeflicient equation, will not he pure
tridiagonal. Therefore, the Thomas algorithm can not be uged directly. Another,
approach wonld be to use the Gaussian eliminationtechnique in solving the coeffi-
cient matrix. But, this on the other hand, would require a huge memory storage,
and would reduce the program running time extensively. This would still be ac-
ceptable if solution is attempted for » simall number of grid points. But, as shown
in Section 3.2, the number of grid points is so huge that such an approach becomes
rather impossible to carry on with.

In an attempt to solve this problem the coefficient matrix is rearranged as
shown in Equation 3.2, so that it became adown right arrow matrix, with pressure
drop term being the last unknown in it. And, with a little modification on the
Thomas algorithm, the auther solved for the pressure drop first, by nppering the
coeflicient matrix. ‘Fhen, the obtained presrure drop was used to solve for the
velocily components, using direct back substitution. This procedure was repeated
to correct for the nonlinear term, until the change in the maximnm velocity was
less then 1% 107!, Using this modification on the Thomas algorithm, saved us
n times the time and memory, used by this technique. ‘T'he later discussion of
discretization, in Section 3.2 would support the modification made by the auther
furthermore.

Ax for the encrgy equation, it can he reen that it iz an elliptic equation in

16



able discretination, could reduce the consistency of the numerical approximation, if
it was not employed correctly. The judging criterion for nsing variable or uniform
dircretization is the solntion predicted hehavior. Small grid sizes are needed to cap-
ture solution sharp variations, while, Jarge grid sines are snfficient to reflect smooth
rolntion variations. In other words, grid digcretization must come in harmoeny with
the rolution variation. "I'he present work gives an rare example, to when variable
discretization becomes a MUST.

Kaviany, in his discnssion of the porons medin velocity profiles, [5], noted ont
" that in the compntations of the velocity fields, where the linear dimension of
the computational domain is L , grid sizes of 0.1 - K*/2, are needed for reasonably
accurate capturing of the boundary Jayer phenomenon. H nniforin mesh is nsged then
1/0.1- K'/2 nodes are needed. Noting that L >>1>d >> K12 this requirement
becomes rather impossible to meet. An alternative will be variable grids along with
a two domain matching similar to matching of inviscid and viscons domains in the
bonndary-layer analysis, Therefore, a straight forward numerical approach to the
Brinkman equation fails to capture the boundary layer.”

In agreement with (5], it can be explained why wniform grid computations failad
to accept realistic valnes of Darcy number or Inertia term variables. Actually,
porous media flow, specially in the inertia flow regime, is so bulky that it can
almost be assmined ag a slip flow; And, when applying the no-slip conditions, a
drastic change in velocity is expected very close to the boundaries, and almost a
nuiform flow is present only a few particles thereafter. ‘I'o come in harmony with
ach variation, variable discretization hecomes a wust. Even then, a huge number
of nodes ig still required.

Therefore, the anthor has wo alternatives, whether to match different domains
as suggested by Kaviany [5], or to use a very high stretching factor, to condense na
mich nodes as porsible near the houndaries. In the latter choice, which was adapted
in the present work, two problems were faced. First, computational time was
proportionally expanded, and storage memory was exhansted. Second, and most
important, harmony is lost with the temperature profile, which did not change so
drastically near the boundaries, Thir caused consistency to he reriously damaged.
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